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Abstract

We study the Lie algebra of infinitesimal isometries of seven-dimensional simply connected
manifolds with Killing spinors. We obtain some splitting theorems for the action of this algebra
on the space of Killing spinors, and as a corollary we prove that there is no infinitesimal isometry
of constant length on a seven-dimensional 3-Sasakian manifold (not isometric to a space form)
except the linear combinations of the Sasakian vector fields. © 2000 Elsevier Science B.V. All
rights reserved.
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1. Introduction

LetMn be a spin manifold and let6M (resp.6cM) be the fiber bundle of real (resp. com-
plex) spinors. A Killing spinor onMn is a sectionψ of 6M satisfying

∇Xψ = λX · ψ ∀X ∈ TM,

for some real numberλ 6= 0, called the Killing constant ofψ . A real Killing spinor gives rise
by complexification to a complex Killing spinor, but the converse is not true in general (see
below). The existence of a (real or complex) Killing spinor implies thatM is an Einstein
manifold with Einstein constant 4λ2(n− 1).

Note that the terminology of real Killing spinors is sometimes used to denote Killing
spinors with real Killing constant, in opposition to imaginary Killing spinors, whose Killing
constant is imaginary. As in this paper we only consider spinors with real Killing constants,
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we preferred to use the attributereal in order to describe the nature of the object (as section
in a real vector bundle), rather than the nature of its Killing constant.

By rescaling the metric we can always suppose that the Killing constant is equal to±1
2,

and we denote byN± the dimension of the complex vector space of complex Killing spinors
with Killing constant±1

2.

Definition 1.1. A compact spin manifold is said to be of typeN if it is simply connected
andN+ +N− = N .

The simply connected manifolds with Killing spinors were described by Bär using the
cone construction and the Berger–Simons holonomy theorem (see [1]). In the even-dimensional
case, the only manifolds of non-zero type are the spheres and the six-dimensional strictly
nearly Kähler manifolds. In this paper we will only consider odd-dimensional simply con-
nected manifolds with Killing spinors, for which we have the following picture [1]:

Type ofM dimM M

N = 1 7 Proper weakG2-structure
N = 2 2k + 1 Einstein–Sasakian structure
N = k + 2 4k + 3 3-Sasakian structure
N = 2k 2k + 1 S2k+1

The Lie algebra of infinitesimal isometries of seven-dimensional manifolds of type 1 was
studied in [3], where several results about the zero sets of Killing vector fields, as well as a
characterization of their exterior derivative in terms of the weakG2-structure are obtained.

The aim of this paper is to study the Lie algebra of infinitesimal isometries of manifolds of
type 2 and 3, especially in dimension 7. Let(M2k+1, g, ξ) be a spin manifold of type 2 (i.e.,
Einstein–Sasakian and not 3-Sasakian). Our first result is that each infinitesimal isometry
of M is an infinitesimal automorphism of the Sasakian structure ofM (Theorem 2.5). We
next describe the action of the Killing vector fields on the set of Killing spinors onM, which
enables us to prove a splitting theorem for the Lie algebra of the infinitesimal isometries
of spin Einstein–Sasakian manifolds (Theorem 2.6). In particular, we prove that the Lie
algebra of infinitesimal automorphisms of a weakG2-structure on a seven-dimensional
manifold of type 2 is a sub-algebra of codimension 1 in the Lie algebra of infinitesimal
isometries. Note that the set of Killing spinors is a vector space if and only if they all have
the same Killing constant, which holds exactly whenk is odd (cf. [2]).

The situation is more complicated for manifolds of type 3 (3-Sasakian manifolds), since
the sub-algebraI spanned by the Sasakian Killing vector fields is no longer Abelian. A
closer analysis of the action of the Killing vector fields on the space of Killing spinors
allows us nevertheless to state a splitting theorem in dimension 7, and to deduce thatI is
in fact an ideal of the Lie algebra of infinitesimal isometries for every seven-dimensional
simply connected 3-Sasakian manifold not isometric toS7 (Theorem 3.1). As a corollary, we
prove that every infinitesimal isometry of constant length on a seven-dimensional manifold
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of type 3 is a linear combination (with constant coefficients) of the Sasakian vector fields
(Theorem 4.2 and Corollary 4.4).

2. Manifolds of type 2

The fundamental tool for most of our results is the Lie derivative of spinors with respect
to Killing vector fields. We refer the reader to [7] for the definition and the basic properties
of this operation. We start by a simple but very useful remark.

Lemma 2.1. The Lie derivative with respect to Killing vector fields preserves the space of
Killing spinors.

Proof. Recall that the Lie derivative with respect to Killing vector fields satisfies the Leibniz
rule for the Clifford product (i.e.,LX(Y · ψ) = LXY · ψ + Y · LXψ).

Suppose thatψ satisfies

∇Yψ = aY· ψ ∀Y, (1)

and letX be a Killing vector field. AsLX preserves the covariant derivative, by taking the
Lie derivative with respect toX of the above formula we obtain

∇LXYψ + ∇Y (LXψ) = aLXY · ψ + aY· LXψ ∀Y, (2)

so, replacingY byLXY in (1) and subtracting from (2) gives

∇Y (LXψ) = aY· LXψ ∀Y. �

Definition 2.2. A vector fieldξ on a Riemannian manifold(M, g) is called a Sasakian
structure ifξ is a Killing vector field of unit length and

(∇Xϕ)Y = g(X, Y )ξ − η(Y )X ∀X, Y, (3)

whereϕ := −∇ξ andη := g(ξ, .). In particular, if we take the scalar product of (3) withξ
it can be seen that the tensorsϕ andη are related by

ϕ2 = −Id + η ⊗ ξ.

Definition 2.3. A triple (ξ1, ξ2, ξ3) of Sasakian structures is called a 3-Sasakian structure
onM if the following conditions are satisfied:
1. The frame(ξ1, ξ2, ξ3) is orthonormal;
2. For each permutation(i, j, k) of signatureδ, the tensorsϕi := −∇ξi andηi := g(ξi, .)

are related byϕi ϕj = (−1)δ ϕk + ηj ⊗ ξi .
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Let (Mn, g, ξ) be a simply connected Einstein–Sasakian manifold and suppose thatM

is not 3-Sasakian. We first remark thatM is spin (see [8]) and admits complex Killing
spinors [1]. The space of all Killing spinors onM can actually be constructed explicitly in
the following way (see [2]).

Lemma 2.4. If n = 1 or 5 mod 8,then M carries two complex lines of complex Killing
spinors with Killing constants±1

2. Their fiber at each point is given by the solution of the
Clifford equation

(±2φ(X)+ ξ ·X −X · ξ) · ψ = 0 ∀X. (4)

If n = 3 or 7 mod 8,then M carries a two-dimensional complex vector space of complex
Killing spinors, with Killing constant12, whose fiber at each point is given by the solution
of the Clifford equation

(2ϕ(X)+ ξ ·X −X · ξ) · ψ = 0 ∀X. (5)

Theorem 2.5. Let X be a Killing vector field on a simply connected Einstein–Sasakian
manifold (Mn, g, ξ), and suppose that M is not 3-Sasakian. Then X is an infinitesimal
automorphism of the Sasakian structure of M, that is, [X, ξ ] = 0.

Proof. The spin representations are known to be real forn = 0,6 and 7 mod 8, complex
for n = 1 and 5 mod 8 and quaternionic forn = 2,3 and 4 mod 8. In our situationn is
odd, and we consider first the casen = 1 or 5 mod 8. Letψ be a Killing spinor onM with
Killing constant 1

2 and letX be any Killing vector field. ThenLXψ has the same Killing
constant, so

LXψ = aψ (6)

for some complex numbera. Moreover

ξ · ψ = bψ (7)

for someb ∈ C (becauseξ · ψ is a Killing spinor with the same Killing constant, as easily
shown by Eq. (4) after covariant differentiation). Then, taking the Lie derivative with respect
toX in (7) and using (6), one obtainsLXξ · ψ = 0, so [X, ξ ] = 0.

If n = 7 mod 8, the complex spin bundle has a real structure, so Lemma 2.4 also holds for
real Killing spinors in this case. Letψ be such a spinor. It is clear thatξ ·ψ is a Killing spinor,
too, and asM is not 3-Sasakian, every real Killing spinor onM is a linear combination ofψ
andξ ·ψ . Recall that we have an Euclidean scalar product on6M, with respect to which the
Clifford multiplication by a vector is skew-symmetric. In particular, we have(X ·φ, φ) = 0
for allX andφ. Moreover, for every spinorφ of constant length (so, in particular, for every
real Killing spinor), we have 0= X(φ, φ) = 2(LXφ, φ), since the Lie derivation with
respect to Killing vector fields preserves the Euclidean product on6M. By Lemma 2.1 we
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then deduce thatLXψ andLX(ξ · ψ) are proportional withξ · ψ andψ , respectively. Let
a ∈ R such thatLXψ = aξ · ψ . We then have

LX(ξ · ψ) = LXξ · ψ + ξ · LXψ = LXξ · ψ − aψ,

and as the left-hand side of this equation is proportional toψ , the same must be true for
LXξ ·ψ , which is actually perpendicular toψ . Thus,LXξ ·ψ = 0, which impliesLXξ = 0.

Finally, let n = 3 mod 8 and suppose thatn > 3 (for n = 3, M would be a space
form). In this case the spin bundle is quaternionic and we fix a complex Killing spinorψ .
It then satisfies (5) and every other complex Killing spinor is of the formqψ , whereq is a
quaternion. We obtain as before

ξ · ψ = Aψ (8)

for some quaternionA and

LXψ = Bψ (9)

for every Killing vector fieldX, whereB is a quaternion depending onX. Taking the Lie
derivative in (8) and using (9) yields

[X, ξ ]ψ = [A,B]ψ.

We denote [X, ξ ] = Z and introduce this in (5) whereY is chosen to be perpendicular to
Z andφ(Z) (here we use the fact that dimM > 3). SinceZ is perpendicular toξ (because
ξ has constant length) this yieldsZ = 0, as claimed. �

We now restrict our attention to the seven-dimensional case, and consider a spin manifold
M7 of type 2 (recall that this means thatM is Einstein–Sasakian, but not 3-Sasakian). The
existence of a Killing spinorψ on a seven-dimensional manifoldM is equivalent to that of
a weakG2-structureωψ [3,4], via the following relation (cf. [2])

ωψ(X, Y, ·) · ψ = (X · Y + g(X, Y )) · ψ ∀X, Y ∈ TM. (10)

By choosingY = ξ in (10) and using (5) we obtain:

dξ = 2ξ |ωψ (11)

Corresponding to the 2-dimensional vector space Kill(6M) of Killing spinors, we have
a 2-dimensional vector spaceG2(M) of weakG2-structures onM, and of course, this
vector space is preserved by the action of the infinitesimal isometries, i.e., we have a real
representationl of i(M) onG2(M). Our aim is to describe this representation. By Theorem
2.5 we have an exact sequence of Lie algebras

0 → Rξ → i(M) → i(M)/Rξ → 0. (12)

Theorem 2.6(Splitting theorem for seven-dimensional spin Einstein–Sasakian manifolds).
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1. The restriction of l toRξ is isomorphic to the(irreducible) representation ofu(1)
onC.

2. There exists a splitting of the above exact sequence ini(M) = Rξ ⊕ i0(M), such that
the restriction of l toi0(M) is trivial.

Proof.
1. We already know thatLξψ = aξ · ψ for somea ∈ R, and from this it follows that
Lξ (ξ · ψ) = −aψ . All we have to show is thata is non-zero. Suppose thatLXψ = 0.
ThenX is an infinitesimal automorphism of the weakG2-structureωψ defined byψ , so
by Theorem 6.1 in [3] we obtain:

π7(dξ) = −2
3(ξ |ωψ). (13)

On the other hand, (11) shows thatdξ = 2ξ |ωψ ∈ 32
7M, soπ7(dξ) = 2ξ |ωψ . This,

together with (13) would then implyξ |ωψ = 0, soξ = 0, a contradiction which proves
thata 6= 0.

2. Let us fix a Killing spinorψ as before. Consider the linear functionL : i(M) → R

given by

L(X) = (LXψ, ξ · ψ).
By the previous discussion,L can be also given by

LXψ = L(X)ξ · ψ.
This formula shows thatL is in fact a Lie algebra homomorphism, since

L[X,Y ]ψ = [LX,LY ]ψ = LX(L(Y )ξ · ψ)− LY (L(X)ξ · ψ)
= −L(X)L(Y )ψ + L(X)L(Y )ψ = 0.

The kerneli0(M) of L is thus an ideal ofi(M) of codimension 1. By (i) we see that
i0(M) ∩ Rξ = 0, soi(M) = Rξ ⊕ i0(M). The last statement of the theorem is now
trivial, by the very definition ofi0(M). �

3. Manifolds of type 3

We now consider a seven-dimensional manifoldM of type 3, i.e., a simply connected
3-Sasakian manifold not isometric with the Euclidean seven-sphere. Denote byξi and
ϕi := −∇ξi , i ∈ {1,2,3}, the 3-Sasakian structure. It is easily seen that the structure
group of the frame of oriented orthonormal bundles onM restricts toSU(2), which can
be viewed (being simply connected) as a subgroup of Spin(7), soM is automatically spin.
M is also Einstein, by a theorem of Kashiwada [6]. As before, each Sasakian structureξi

defines a two-dimensional sub-bundle of6M,Hi := φ(ξi), trivialized by Killing spinors,
and conversely, eachHi determinesξi . If for somex ∈ M the fibersHi(x) andHj(x)
are equal, thenHi = Hj (a Killing spinor is determined by its value at any point), so



A. Moroianu / Journal of Geometry and Physics 35 (2000) 63–74 69

ξi = ξj , thus implyingi = j . Consequently, fori 6= j we have dim(Hi(x) ∩Hj(x)) ≤ 1,
so dim(Hi(x)∪Hj(x)) ≥ 3. But the space of Killing spinors has dimension 3, so dim(Hi(x)∪
Hj(x)) = 3, thus showing that dim(Hi(x) ∩ Hj(x)) = 1. We choose Killing spinors of
unit normψ1,ψ2,ψ3 spanningH2 ∩H3,H3 ∩H1 andH1 ∩H2, respectively. We first show
that these three spinors are orthogonal to each other in every point ofM. Let us fix some
x ∈ M and denote byaij := (ψi, ψj ) in x. Using the computation of [2], p. 84, we see that
ψ1 andξ2 · ψ1 spanH2, so we can write

ψ3 = a13ψ1 + aξ2 · ψ1 (14)

for some real numbera. Similarly we can findb ∈ R such that

ψ1 = a12ψ2 + bξ3 · ψ2. (15)

Using (14) and (15) we obtain

ψ3 = a13a12ψ2 + a13bξ3 · ψ2 + aa12ξ2 · ψ2 + abξ2 · ξ3 · ψ2, (16)

and taking the scalar product withψ2 in (16) givesa23 = a13a12. Similarly we obtain
a13 = a23a12, and hencea23(1 − a2

12) = 0. Buta2
12 < 1, since otherwiseψ1 = ±ψ2, so

a23 = 0, and by symmetry,a12 = a13 = 0.
We thus have shown thatψi are everywhere orthogonal to each other, which means that

Hi is the orthogonal space toψi inH = ∪Hi . Using this and relation (5) we see thatξ2 ·ψ1

lies inH1 ∩ H2, so we can suppose without loss of generality thatξ2 · ψ1 = −ψ3, and
similarly ξ3 · ψ1 = −ψ2. We then also haveξ1 · ψ2 = εψ3, whereε = ±1. By replacing
ψ1 with εψ1 we finally obtain the homogeneous formulas

ξi · ψj = δεψk, (17)

whereδ is the signature of the permutation{i, j, k}.
Let us now compute the Lie derivative of the spinorsψi with respect toξj . As Lξ1

preservesH1, Lξ1ψ3 lies inH1. Moreover it is orthogonal toψ3, so there is somea ∈ R
such thatLξ1ψ3 = aψ2. Taking the Lie derivative with respect toξ1 in ξ2 · ψ3 = εψ1 and
using the definition of the 3-Sasakian structure we obtainεLξ1ψ1 = ξ3 ·ψ3 +aξ2 ·ψ2. This
is orthogonal to all of theψi , as easily follows from (17). On the other hand,Lξ1ψ1 ∈ H
by Lemma 2.1, soLξ1ψ1 = 0. This implies thatξ3 · ψ3 + aξ2 · ψ2 = 0, soa = −1 (by
(17)) and hence

Lξiψj = δψk, (18)

whereδ denotes the signature of the permutation{i, j, k}, with the conventionδ = 0 if
{i, j, k} 6= {1,2,3}.

We are now ready for the main result of this section. As in the Einstein–Sasakian case,
there is a natural bijection between the 3-dimensional vector spaceH of Killing spinors and
the set of weakG2-structuresG2(M), and we consider the real representationl of i(M) on
G2(M) given by the Lie derivative via the above bijection. LetI denote the sub-algebra of
i(M) spanned byξ1, ξ2 andξ3.
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Theorem 3.1(Splitting theorem for seven-dimensional 3-Sasakian manifolds).
1. The restriction of l to I is isomorphic to the(irreducible) representation ofsu(2) = so(3)

onR3.
2. There exists a Lie algebra homomorphismL : i(M) → I , whose restriction to I is the

identity.
3. The restriction of l toi0(M) := ker(L) is trivial.
4. The induced exact sequence of Lie algebras

0 → i0(M) → i(M) → I → 0 (19)

is splitting. Equivalently, I is an ideal ofi(M) andi(M) ' I ⊕ i0(M).

Proof.
1. Follows directly from (18).
2. GivenX ∈ i(M), we denote bybij (X) = (LXψi, ψj ), and defineL(X) = 1

2(b23(X)ξ1+
b31(X)ξ2 + b12(X)ξ3). Let us check thatL is a Lie algebra homomorphism. TakeX,
Y ∈ i(M). We will just show that theξ1-component ofL([X, Y ]) and [L(X), L(Y )] are
the same, which is clearly sufficient, by symmetry. From the definition of a 3-Sasakian
structure we obtain directly

g([L(X), L(Y )], ξ1) = 1
2(b31(X)b12(Y )− 2b31(Y )b12(X)). (20)

UsingL[X,Y ] = [LX,LY ] we find

b23([X, Y ])= (LXLYψ2, ψ3)− (LYLXψ2, ψ3)

= (LX(b21(Y )ψ1+b23(Y )ψ3), ψ3)−(LY (b21(X)ψ1+b23(X)ψ3), ψ3)

= b21(Y )b13(X)− b21(X)b13(Y ),

so finally

g(L([X, Y ]), ξ1) = 1
2b23([X, Y ]) = 1

2(b31(X)b12(Y )− 2b31(Y )b12(X)).

The last assertion follows from (18).
3. If X ∈ i0(M), thenbij = 0 soLXψi is orthogonal toH . As LXψi ∈ H (by Lemma

2.1), we obtainLXψi = 0.
4. We have to show thatI is an ideal ofi(M) or, equivalently, thatI and i0(M) are

commuting sub-algebras ofi(M). LetX ∈ i0(M). Taking the Lie derivative of (17) with
respect toX and using (3), we see thatLXξi · ψj = 0, soLXξi = 0. �

4. Infinitesimal isometries of unit length on seven-dimensional manifolds of type 3

As a first application of the above result we have the following

Corollary 4.1. On a seven-dimensional manifold M of type 3, every Killing vector field X of
unit length is either a Sasakian structure or an infinitesimal automorphism of the3-Sasakian
structure.
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Proof. We decomposeX with respect toi(M) = I⊕ i0(M) asX = A+Y . From (4) of the
previous theorem we know thatY commutes with the unit Killing vector fieldsξi spanning
I , i.e., it is an infinitesimal automorphism of the 3-Sasakian structure. Ifai denotes the
ξi-component ofA, we have to show that eitherY = 0 or ai = 0. Consider the functions
fi := g(X, ξi). As [Y, ξ1] = 0, we can compute [X, ξ1] = a2ξ3 − a3ξ2, so

0 = −1
2Lξ1g(X,X) = −g(Lξ1X,X) = g([X, ξ1], X) = a2f3 − a3f2,

and similarly

a2f1 = a1f2 and a3f1 = a1f3. (21)

On the other hand, using the definition of the 3-Sasakian structure one easily obtains

ξi(fi) = 0 (22)

and

ξi(fj ) = 2δ(fk − ak), (23)

whereδ denotes as usual the signature of the permutation{i, j, k}.
Suppose now that at least one of theai ’s does not vanish. Without loss of generality, we

can supposea1 6= 0. Differentiating in (21) with respect toξ1 and using (22) and (23) we
obtainf2 = a2 andf3 = a3. Using [Y, ξi ] = 0 we find 0= dfi = 2ϕi(Y ) (i = 2 and
i = 3), soY ∈ Rξ2 ∩Rξ3 = {0}. It is now clear thatX belongs to the 2-sphere of Sasakian
structures ofM. �

Actually a closer analysis of this situation allows us to show that the second case never
occurs in the above corollary. Indeed, we have the following theorem.

Theorem 4.2. Consider an infinitesimal isometry of unit length X on a simply connected
3-Sasakian manifold(M7, g, ξi). If X is an infinitesimal automorphism of the3-Sasakian
structure, then M is isometric to the sphereS7.

Proof. It is obvious that{ξ1, ξ2, ξ3, X, ϕ1(X), ϕ2(X), ϕ3(X)} is a frame in each point of
M7 whereX does not belong to the distribution spanned by theξi . The setN of such points is
obviously open. Suppose thatN is not dense inM. Then there exists an open subsetU ofM
such thatX is a vertical Killing vector field overU (in the sense of Ishihara and Konishi [5]).
From Lemma 7 of loc. cit. we obtain thatX is a linear combination with constant coefficients
of ξi overU , and hence overM since two infinitesimal isometries which coincide on an
open set must be equal. This contradicts the fact thatX is an infinitesimal automorphism
of the 3-Sasakian structure, so we conclude thatN is everywhere dense inM.

The next step is to prove that in any point ofN , the sectional curvature ofM is constant
and equal to 1. In order to prove this, it suffices to show that

g(R(Y1, Y2)Y3, Y4) = g(Y2, Y3)g(Y1, Y4)− g(Y1, Y3)g(Y2, Y4), (24)

whenever eachYi belong to the frame{ξ1, ξ2, ξ3, X, ϕ1(X), ϕ2(X), ϕ3(X)}. First of all,
whenYi = ξj for somei, j , then we are done by Lemma 4 of [2], p. 78. Actually, this



72 A. Moroianu / Journal of Geometry and Physics 35 (2000) 63–74

simple lemma just says that the sectional curvature of every 2-plane containing one of the
Sasakian directions is equal to 1.

It is thus enough to check (24) in the case whenYi ∈ {X, ϕ1(X), ϕ2(X), ϕ3(X)}. A priori
we would have 44 = 256 possibilities, but thanks to the symmetries of the curvature tensor
and of the 3-Sasakian structure, the reader can easily convince himself that it is enough to
prove (24) in the following cases:
(a)Y1 = ϕ1(X), Y2 = Y3 = X,
(b) Y1 = X, Y2 = Y3 = ϕ1(X) ,
(c) Y1 = ϕ2(X), Y2 = Y3 = ϕ1(X),
(d) Y1 = ϕ3(X), Y2 = ϕ1(X), Y3 = ϕ2(X),
(e)Y1 = ϕ1(X), Y2 = ϕ2(X), Y3 = X. �

In order to compute the curvature tensor we need the

Lemma 4.3. The following relations hold

∇XX = 0, [X, ξi ] = 0 ∀i ∈ {1,2,3}, (25)

[X, ϕi(X)] = 0 ∀i ∈ {1,2,3}, (26)

dfi = 2ϕi(X) ∀i ∈ {1,2,3} (fi = g(X, ξi)), (27)

g(X, ϕi(X)) = 0, g(ϕi(X), ϕj (X)) = δij − fifj , (28)

∇X(ϕi(X)) = ξi − fiX ∀i ∈ {1,2,3}, (29)

∇ϕi(X)(ϕi(X)) = −2fiϕi(X) ∀i ∈ {1,2,3}, (30)

∇ϕi(X)(ϕj (X)) = −fiϕj (X)− fjϕi(X)− δξk, (31)

where in the last equation, δ denotes as usual the signature of the permutation{i, j, k}.

Proof. (25) is just the hypothesis onX; (26) follows from the fact thatLX preservesξi and
∇, so it preservesϕi ; (27) and (28) are trivial, and (29)–(31) follow directly from (26) and
the definition of a 3-Sasakian structure. �

We will now check the relation (24) in each of the cases (a)–(e) using the definition of
the 3-Sasakian structure and the above lemma.

(a) R(ϕ1(X),X)X= −∇X∇ϕ1(X)X

= −∇X(ξ1 − f1X) = ϕ1(X) = g(X,X)ϕ1(X)− g(X, ϕ1(X))X;

(b) R(X, ϕ1(X))ϕ1(X)= ∇X(−2f1ϕ1(X))− ∇ϕ1(X)(ξ1 − f1X)

= −2f1(ξ1 − f1X)+ ϕ2
1(X)+ f1(ξ1 − f1X)+ 2X|ϕ1(X)|2

= −f1(ξ1 − f1X)−X + ξ1f1 + 2X|ϕ1(X)|2 = X|ϕ1(X)|2
= g(ϕ1(X), ϕ1(X))X − g(X, ϕ1(X))ϕ1(X);
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(c) R(ϕ2(X), ϕ1(X))ϕ1(X)

= ∇ϕ2(X)(−2f1ϕ1(X))− ∇ϕ1(X)(−f2ϕ1(X)− f1ϕ2(X)+ ξ3)− 2∇ξ3(ϕ1(X))

= −2f1(−f2ϕ1(X)−f1ϕ2(X)+ξ3)+4f1f2ϕ1(X)−2f1f2ϕ1(X)− 2f1f2ϕ1(X)

+2(1 − f 2
1 )ϕ2(X)+ f1(−f2ϕ1(X)− f1ϕ2(X)− ξ3)+ ϕ3(ϕ1(X))

+2ϕ1(ϕ3(X))− 2f3ξ1 + 2f1ξ3 = f1f2ϕ1(X)+ (2f 2
1 + 2 − 2f 2

1 − f 2
1 )ϕ2(X)

−2f1ξ3 − f1ξ3 + ϕ2(X)+ f1ξ3 − 2ϕ2(X)+ 2f3ξ1 − 2f3ξ1 + 2f1ξ3

= f1f2ϕ1(X)+(1−f 2
1 )ϕ2(X)=g(ϕ1(X), ϕ1(X))ϕ2(X)−g(ϕ1(X), ϕ2(X))ϕ1(X);

(d) R(ϕ3(X), ϕ1(X))ϕ2(X)

= ∇ϕ3(X)(−f1ϕ2(X)− f2ϕ1(X)− ξ3)− ∇ϕ1(X)(−f2ϕ3(X)− f3ϕ2(X)+ ξ1)

+2∇ξ2(ϕ2(X))=2f1f3ϕ2(X)+2f2f3ϕ1(X)− f1(−f2ϕ3(X)− f3ϕ2(X)+ ξ1)

−f2(−f1ϕ3(X)− f3ϕ1(X)− ξ2)−X + ξ3f3 − 2f1f2ϕ3(X)− 2f1f3ϕ2(X)

+f2(−f1ϕ3(X)− f3ϕ1(X)+ ξ2)+ f3(−f1ϕ2(X)− f2ϕ1(X)− ξ3)

−X + ξ1f1 + 2f2ξ2 − 2f2ξ2 + 2X − 2f2ξ2 = f2f3ϕ1(X)− f1f2ϕ3(X)

= g(ϕ1(X), ϕ2(X))ϕ3(X)− g(ϕ2(X), ϕ3(X))ϕ1(X);

(e) R(ϕ1(X), ϕ2(X))X= ∇ϕ1(X)(ξ2 − Xf2)− ∇ϕ2(X)(ξ1 − Xf1)+ 2∇ξ3X
= ϕ3(X)− f1ξ2 − f2(ξ1 − Xf1)+ 2f1f2X + ϕ3(X)

+f2ξ1 + f1(ξ2 − Xf2)− 2f1f2X − 2ϕ3(X) = 0

= g(X, ϕ2(X))ϕ1(X)− g(X, ϕ1(X))ϕ2(X).

In order to complete the proof of the theorem, we remark that,N being dense inM, the
sectional curvature ofM has to be constant on the wholeM, so by simply connectedness,
M is isometric toS7.

Corollary 4.4. On a seven-dimensional manifold M of type3, the only Killing vector fields
of constant length are the trivial ones, i.e., the linear combinations with constant coefficients
of the Sasakian vector fields.
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