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Abstract

We study the Lie algebra of infinitesimal isometries of seven-dimensional simply connected
manifolds with Killing spinors. We obtain some splitting theorems for the action of this algebra
on the space of Killing spinors, and as a corollary we prove that there is no infinitesimal isometry
of constant length on a seven-dimensional 3-Sasakian manifold (not isometric to a space form)
except the linear combinations of the Sasakian vector fields. © 2000 Elsevier Science B.V. All
rights reserved.
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1. Introduction

Let M" be a spin manifold and & M (resp.X¢ M) be the fiber bundle of real (resp. com-
plex) spinors. A Killing spinor onM" is a section) of £ M satisfying

VY =AX - VX e TM,

for some real number # 0, called the Killing constant af . A real Killing spinor gives rise
by complexification to a complex Killing spinor, but the converse is not true in general (see
below). The existence of a (real or complex) Killing spinor implies thfais an Einstein
manifold with Einstein constanti4(n — 1).

Note that the terminology of real Killing spinors is sometimes used to denote Killing
spinors with real Killing constant, in opposition to imaginary Killing spinors, whose Killing
constant is imaginary. As in this paper we only consider spinors with real Killing constants,
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we preferred to use the attributEal in order to describe the nature of the object (as section
in a real vector bundle), rather than the nature of its Killing constant.

By rescaling the metric we can always suppose that the Killing constant is eqﬂét to
and we denote b¥y.. the dimension of the complex vector space of complex Killing spinors
with Killing constant+1.

Definition 1.1. A compact spin manifold is said to be of typeif it is simply connected
andN; + N_ = N.

The simply connected manifolds with Killing spinors were described by Bar using the
cone construction and the Berger—Simons holonomy theorem (see[1]). Inthe even-dimensional
case, the only manifolds of non-zero type are the spheres and the six-dimensional strictly
nearly Kéhler manifolds. In this paper we will only consider odd-dimensional simply con-
nected manifolds with Killing spinors, for which we have the following picture [1]:

Type of M dim M M

N=1 7 Proper wealG >-structure
N=2 2k +1 Einstein—Sasakian structure
N=k+2 4k + 3 3-Sasakian structure

N =2k 2+ 1 q2k+1

The Lie algebra of infinitesimal isometries of seven-dimensional manifolds of type 1 was
studied in [3], where several results about the zero sets of Killing vector fields, as well as a
characterization of their exterior derivative in terms of the wéakstructure are obtained.

The aim of this paper is to study the Lie algebra of infinitesimal isometries of manifolds of
type 2 and 3, especially in dimension 7. (@121 ¢, &) be a spin manifold of type 2 (i.e.,
Einstein—Sasakian and not 3-Sasakian). Our first result is that each infinitesimal isometry
of M is an infinitesimal automorphism of the Sasakian structur® ¢fTheorem 2.5). We
next describe the action of the Killing vector fields on the set of Killing spinor&owhich
enables us to prove a splitting theorem for the Lie algebra of the infinitesimal isometries
of spin Einstein—Sasakian manifolds (Theorem 2.6). In particular, we prove that the Lie
algebra of infinitesimal automorphisms of a we@l-structure on a seven-dimensional
manifold of type 2 is a sub-algebra of codimension 1 in the Lie algebra of infinitesimal
isometries. Note that the set of Killing spinors is a vector space if and only if they all have
the same Killing constant, which holds exactly whieis odd (cf. [2]).

The situation is more complicated for manifolds of type 3 (3-Sasakian manifolds), since
the sub-algebrd spanned by the Sasakian Killing vector fields is no longer Abelian. A
closer analysis of the action of the Killing vector fields on the space of Killing spinors
allows us nevertheless to state a splitting theorem in dimension 7, and to dedutésthat
in fact an ideal of the Lie algebra of infinitesimal isometries for every seven-dimensional
simply connected 3-Sasakian manifold not isometri¢téTheorem 3.1). As a corollary, we
prove that every infinitesimal isometry of constant length on a seven-dimensional manifold
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of type 3 is a linear combination (with constant coefficients) of the Sasakian vector fields
(Theorem 4.2 and Corollary 4.4).

2. Manifolds of type 2

The fundamental tool for most of our results is the Lie derivative of spinors with respect
to Killing vector fields. We refer the reader to [7] for the definition and the basic properties
of this operation. We start by a simple but very useful remark.

Lemma 2.1. The Lie derivative with respect to Killing vector fields preserves the space of
Killing spinors

Proof. Recallthatthe Lie derivative with respect to Killing vector fields satisfies the Leibniz
rule for the Clifford product (i.eLx(Y - ) = LxY - + Y - Lxy).
Suppose that satisfies

Vyy =aY-y VY, (1)

and letX be a Killing vector field. ASCx preserves the covariant derivative, by taking the
Lie derivative with respect t& of the above formula we obtain

Vegy¥ + Vy(Lxy) =alxY -y +aY- Lxy VY, 2)
so, replacing by LxY in (1) and subtracting from (2) gives

Vy(Lxy) =aY-Lxy VY. O

Definition 2.2. A vector fieldé on a Riemannian manifoldM, g) is called a Sasakian
structure if¢ is a Killing vector field of unit length and

(Vx@)Y = g(X,V)§ —n(¥)X VX,Y, ®3)

wherep := —V¢& andn = g(&, .). In particular, if we take the scalar product of (3) with
it can be seen that the tensgrandy are related by

P’ =—-ld+n®E&.

Definition 2.3. A triple (&1, &2, £3) of Sasakian structures is called a 3-Sasakian structure
on M if the following conditions are satisfied:
1. The framgé, &2, &3) is orthonormal;
2. For each permutatiofi, j, k) of signatures, the tensorg; := —V§&; andn; = g(&,.)
are related by; ¢; = (=1)° ¢ + 1 @ &.
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Let (M", g, &) be a simply connected Einstein—Sasakian manifold and suppos# that
is not 3-Sasakian. We first remark thit is spin (see [8]) and admits complex Killing
spinors [1]. The space of all Killing spinors @ can actually be constructed explicitly in
the following way (see [2]).

Lemma 2.4. If n = 1 or 5 mod 8,then M carries two complex lines of complex Killing
spinors with Killing constant&%. Their fiber at each point is given by the solution of the
Clifford equation

E20(X)+&E-X—-X-& -y =0 VX. 4

If n = 3 or 7 mod 8,then M carries a two-dimensional complex vector space of complex
Killing spinors, with Killing constan%, whose fiber at each point is given by the solution
of the Clifford equation

2pX)+&-X—-X-§) -y =0 VX ®)

Theorem 2.5. Let X be a Killing vector field on a simply connected Einstein—Sasakian
manifold (M", g, &), and suppose that M is not 3-Sasakian. Then X is an infinitesimal
automorphism of the Sasakian structure qfthat is, [X, £§] = 0.

Proof. The spin representations are known to be reakfer 0, 6 and 7 mod 8, complex
forn = 1 and 5 mod 8 and quaternionic fer= 2, 3 and 4 mod 8. In our situatiom is
odd, and we consider first the case- 1 or 5 mod 8. Let) be a Killing spinor onM with
Killing constant% and letX be any Killing vector field. TheiLx ¢ has the same Killing
constant, so

Lxy =ay (6)

for some complex number. Moreover

§-Y=0by ()

for someb € C (becausé - v is a Killing spinor with the same Killing constant, as easily
shown by Eq. (4) after covariant differentiation). Then, taking the Lie derivative with respect
to X in (7) and using (6), one obtaindyé - = 0,s0 [X, ] = 0.

If » = 7 mod 8, the complex spin bundle has a real structure, so Lemma 2.4 also holds for
real Killing spinorsin this case. Let be such a spinor. Itis clear thatys is a Killing spinor,
too, and a9/ is not 3-Sasakian, every real Killing spinor shis a linear combination of
ands - . Recall that we have an Euclidean scalar produc o, with respect to which the
Clifford multiplication by a vector is skew-symmetric. In particular, we he¥e¢, ¢) = 0
for all X and¢. Moreover, for every spinap of constant length (so, in particular, for every
real Killing spinor), we have G= X (¢, ¢) = 2(Lx¢, ¢), since the Lie derivation with
respect to Killing vector fields preserves the Euclidean produ@ &h By Lemma 2.1 we
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then deduce thaf x v andLx (& - ¢) are proportional witt§ - ¢ andy, respectively. Let
a € RsuchthatCxy = a& - . We then have

LxE&-y)=LxE -y +E-Lxy=LxE- ¥ —ay,

and as the left-hand side of this equation is proportionaf téthe same must be true for
Lx& -y, which is actually perpendicular tb. Thus,Lx& - = 0, whichimpliesCx& = 0.

Finally, letn = 3 mod 8 and suppose that> 3 (forn = 3, M would be a space
form). In this case the spin bundle is quaternionic and we fix a complex Killing sginor
It then satisfies (5) and every other complex Killing spinor is of the fgim whereq is a
guaternion. We obtain as before

- =AYy 8
for some quaterniod and
Lxy = By 9)

for every Killing vector fieldX, whereB is a quaternion depending dn Taking the Lie
derivative in (8) and using (9) yields

[X. €]y =[A, B]y.

We denote X, £] = Z and introduce this in (5) wheréis chosen to be perpendicular to
Z and¢ (Z) (here we use the fact that dibi > 3). SinceZ is perpendicular t§ (because
& has constant length) this yields= 0, as claimed. O

We now restrict our attention to the seven-dimensional case, and consider a spin manifold
M of type 2 (recall that this means théat is Einstein—Sasakian, but not 3-Sasakian). The
existence of a Killing spinoty on a seven-dimensional manifald is equivalent to that of
a weakGo-structurewy, [3,4], via the following relation (cf. [2])

wy(X,Y,) - v=X-Y+gX, V) -y VX, YeTM (20)
By choosingY = & in (10) and using (5) we obtain:
d& =2t _|wy (12)

Corresponding to the 2-dimensional vector space Kil) of Killing spinors, we have
a 2-dimensional vector spa@g (M) of weak Go-structures onM, and of course, this
vector space is preserved by the action of the infinitesimal isometries, i.e., we have a real
representatiohof i (M) on G2(M). Our aim is to describe this representation. By Theorem
2.5 we have an exact sequence of Lie algebras

0> R - i(M) — i(M)/RE — 0. (12)

Theorem 2.6(Splitting theorem for seven-dimensional spin Einstein—Sasakian manifolds).
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1. The restriction of | toR¢ is isomorphic to thglirreducible) representation ofi(1)
onC.

2. There exists a splitting of the above exact sequen¢élf) = RE @ ig(M), such that
the restriction of | toig(M) is trivial.

Proof.

1. We already know thafsyy = a& - ¢ for somea € R, and from this it follows that
Le(& - ) = —ay. All we have to show is that is non-zero. Suppose théigy = 0.
ThenX is an infinitesimal automorphism of the we@l-structurew,, defined byy, so
by Theorem 6.1 in [3] we obtain:

n7(dE) = —3(E Jwy). (13)

On the other hand, (11) shows thét = 2&_|wy, € A%M, son7(d§) = 26 _|wy. This,
together with (13) would then imply_| wy, = 0, sog = 0, a contradiction which proves
thata # O.

2. Let us fix a Killing spinory as before. Consider the linear functién: i(M) — R
given by

LX) = (Lxy,§-¥).

By the previous discussioi, can be also given by
Lxy = L(X)§ - .

This formula shows that is in fact a Lie algebra homomorphism, since

Lix ¥ =[Lx, Ly]Y = Lx(LY)E - ¥) — Ly (L(X)& - )
=—L(X)LY)Y + L(X)L(Y)y =0.

The kernelig(M) of L is thus an ideal of (M) of codimension 1. By (i) we see that
io(M) NRE = 0, soi(M) = RE @ ip(M). The last statement of the theorem is now
trivial, by the very definition ofo(M). O

3. Manifolds of type 3

We now consider a seven-dimensional manifdidof type 3, i.e., a simply connected
3-Sasakian manifold not isometric with the Euclidean seven-sphere. Dendieangd
i = —Vg, i € {1, 2,3}, the 3-Sasakian structure. It is easily seen that the structure
group of the frame of oriented orthonormal bundlesMrrestricts toSU(2), which can
be viewed (being simply connected) as a subgroup of Spin(7) sautomatically spin.
M is also Einstein, by a theorem of Kashiwada [6]. As before, each Sasakian st§jcture
defines a two-dimensional sub-bundleX#?, H; := ¢ (&;), trivialized by Killing spinors,
and conversely, eacH; determinest;. If for somex e M the fibersH;(x) and H;(x)
are equal, ther; = H; (a Killing spinor is determined by its value at any point), so
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& = &;, thus implyingi = j. Consequently, for # j we have diniH; (x) N H;(x)) < 1,
sodim(H; (x)UH,(x)) > 3. Butthe space of Killing spinors has dimension 3, sodifix)U
H;(x)) = 3, thus showing that dig#; (x) N H;(x)) = 1. We choose Killing spinors of
unit normr1, Y2, Y3 spanningt, N Hs, H3 N Hy and H1 N Ha, respectively. We first show
that these three spinors are orthogonal to each other in every paifit bét us fix some

x € M and denote by,; := (¢;, ¥;) in x. Using the computation of [2], p. 84, we see that
Y1 andéz - Y1 spanHy, SO we can write

V3 = aizy1 +aéz - Y1 (14)
for some real number. Similarly we can find € R such that

Y1 = a12y2 + bés - Y2 (15)
Using (14) and (15) we obtain

V3 = a13a12¥2 + ai3bés - Y2 + adgkr - Y2 4 abéz - £3 - Y2, (16)

and taking the scalar product withy in (16) givesazz = aizai2. Similarly we obtain
a3 = azaaiz, and henceips(l — a2,) = 0. Buta?, < 1, since otherwisgry = £y, SO
az3 = 0, and by symmetryj12 = a13 = 0.
We thus have shown théi; are everywhere orthogonal to each other, which means that
H; is the orthogonal space ty in H = UH;. Using this and relation (5) we see tl§at vr1
lies in Hy N Hz, SO we can suppose without loss of generality thaty, = —y3, and
similarly &3 - 1 = —y2. We then also havg, - ¥» = eyr3, wheree = +1. By replacing
Y1 with eyr1 we finally obtain the homogeneous formulas

& - Yj = dey, (17)

wherej$ is the signature of the permutati¢h) j, k}.

Let us now compute the Lie derivative of the spingrswith respect to&;. As L,
preservediy, Lg ¥3 lies in Hy. Moreover it is orthogonal tgrs, so there is some € R
such thatCe, ¥3 = ayp. Taking the Lie derivative with respect g in & - ¥3 = ey1 and
using the definition of the 3-Sasakian structure we obtdiny1 = &3- Y3+ a2 - 2. This
is orthogonal to all of they;, as easily follows from (17). On the other haut}, v, € H
by Lemma 2.1, s&¢, 1 = 0. This implies thatz - Y3 + a&2 - Y2 = 0, soa = —1 (by
(17)) and hence

Lej = 8y, (18)

wheres denotes the signature of the permutat{any, k}, with the conventiors = O if
{i,J, kY #{1,2,3}.

We are now ready for the main result of this section. As in the Einstein—Sasakian case,
there is a natural bijection between the 3-dimensional vector gpadeilling spinors and
the set of wealG >-structuresG (M), and we consider the real representatiohi (M) on
G2(M) given by the Lie derivative via the above bijection. Ledenote the sub-algebra of
i(M) spanned by, & andés.
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Theorem 3.1(Splitting theorem for seven-dimensional 3-Sasakian manifolds).

1.

The restriction of I to | is isomorphic to tH@reducible) representation afu(2) = so0(3)
onRR3,

. There exists a Lie algebra homomorphiém i (M) — I, whose restriction to | is the

identity.

. The restriction of | tag(M) := ker(L) is trivial.
. The induced exact sequence of Lie algebras

0— iogM) - i(M)—>1—0 (19)
is splitting. Equivalentlyl is an ideal ofi (M) andi (M) >~ I & ig(M).

Proof.

1.
2.

Follows directly from (18).
GivenX e i(M),wedenoteby;; (X) = (Lx¥;, ¥;),and defind.(X) = %(bzg(X)élJr
b31(X)&2 + b12(X)E3). Let us check thaL is a Lie algebra homomorphism. Take
Y € i(M). We will just show that thé&1-component of.([ X, Y]) and [L(X), L(Y)] are
the same, which is clearly sufficient, by symmetry. From the definition of a 3-Sasakian
structure we obtain directly

g(L(X), L(Y)], &) = 3(b31(X)b12(Y) — 2b31(Y)b12(X)). (20)
Using Lx,y] = [£x, Ly] we find

ba3([X,Y]) = (LxLyV2, ¥3) — (LyLx V2, ¥3)
= (Lx (b21(Y)Y1+b23(Y)¥r3), ¥3)—(Ly (b21(X)Y1+b23(X)¥r3), ¥3)
=b21(Y)b13(X) — b21(X)b13(Y),

so finally
g(L(X.Y]). &) = 3b23([X. Y]) = 3(b31(X)b12(Y) — 2b31(Y)b12(X)).

The last assertion follows from (18).

. If X € ig(M), thenb;; = 0 soLxy; is orthogonal toH. As Lxy; € H (by Lemma

2.1), we obtainCxy; = 0.

. We have to show that is an ideal ofi(M) or, equivalently, that? andio(M) are

commuting sub-algebras ofM). Let X € ig(M). Taking the Lie derivative of (17) with
respect taX and using (3), we see théf&; - v; = 0, soLx§ = 0. O

4. Infinitesimal isometries of unit length on seven-dimensional manifolds of type 3

As a first application of the above result we have the following

Corollary 4.1. On a seven-dimensional manifold M of typeery Killing vector field X of
unitlengthis either a Sasakian structure or an infinitesimal automorphism 8f8asakian
structure
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Proof. We decompos& with respecttd(M) = I ®ig(M) asX = A+ Y. From (4) of the

previous theorem we know th&tcommutes with the unit Killing vector fields spanning

I, i.e., it is an infinitesimal automorphism of the 3-Sasakian structure. dflenotes the
&-component ofd, we have to show that eithér = 0 ora; = 0. Consider the functions
fi = g(X,&). As[Y, &] = 0, we can computeX|, &1] = azés — azéa, SO

0=—3Leg(X, X) = —g(Le, X, X) = g([X, £1], X) = az f3 — asfa,

and similarly

azfi=aifz and asf1 = a1 fs. (21)
On the other hand, using the definition of the 3-Sasakian structure one easily obtains

&(fi)=0 (22)
and

& (f)) = 28(fi — ax), (23)

wheres denotes as usual the signature of the permutdtiof k}.

Suppose now that at least one of this does not vanish. Without loss of generality, we
can suppose; # 0. Differentiating in (21) with respect t& and using (22) and (23) we
obtain fo = az and f3 = ag. Using Y, &;] = 0 we find 0= df; = 2¢;(Y) ( = 2 and
i = 3),s0Y € R&;NRE3 = {0}. Itis now clear thaX belongs to the 2-sphere of Sasakian
structures of\/. O

Actually a closer analysis of this situation allows us to show that the second case never
occurs in the above corollary. Indeed, we have the following theorem.

Theorem 4.2. Consider an infinitesimal isometry of unit length X on a simply connected
3-Sasakian manifoldM’, g, &). If X is an infinitesimal automorphism of tt%eSasakian
structurg then M is isometric to the spheft.

Proof. It is obvious that{&s, &2, &3, X, 01(X), ¢2(X), ¢3(X)} is a frame in each point of
M7 whereX does not belong to the distribution spanned bytth&he setV of such pointsis
obviously open. Suppose thiitis not dense id/. Then there exists an open sub8atf M
such thaiX is a vertical Killing vector field ovet (in the sense of Ishihara and Konishi [5]).
From Lemma 7 of loc. cit. we obtain th&tis a linear combination with constant coefficients
of & overU, and hence oveM since two infinitesimal isometries which coincide on an
open set must be equal. This contradicts the fact Xhit an infinitesimal automorphism
of the 3-Sasakian structure, so we conclude Mat everywhere dense i .

The next step is to prove that in any point@f the sectional curvature @f is constant
and equal to 1. In order to prove this, it suffices to show that

g(R(Y1, Y2)Y3, Ya) = g(Y2, ¥3)g (Y1, Ya) — g(Y1, Y3)g(Y2, Ys), (24)

whenever eacly; belong to the frameéy, &, &3, X, 91(X), p2(X), ¢3(X)}. First of all,
whenY; = &; for somei, j, then we are done by Lemma 4 of [2], p. 78. Actually, this
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simple lemma just says that the sectional curvature of every 2-plane containing one of the
Sasakian directions is equal to 1.
Itis thus enough to check (24) in the case wlieg {X, p1(X), p2(X), ¢3(X)}. A priori

we would have 4 = 256 possibilities, but thanks to the symmetries of the curvature tensor
and of the 3-Sasakian structure, the reader can easily convince himself that it is enough to
prove (24) in the following cases:

@Y1 =p1(X), Y2=Y3=X,

b)Y1=X,Y2=Y3=¢1(X),

(©) Y1 = 92(X), Y2 = Y3 = ¢1(X),

(d) Y1 = @3(X), Y2 = ¢1(X), Y3 = ¢2(X),

(e) Y1 = ¢1(X), Y2 = g2(X), Y3 = X. a

In order to compute the curvature tensor we need the

Lemma 4.3. The following relations hold

VxX =0, [X,§]=0 Vie{l 23}, (25)
[X,0;(X)]=0 Vie{l,2 3]}, (26)
dfi = 2¢;(X) Vi e{l,23} (fi =X, &), (27)
g(X,0i(X)) =0, gpi(X),9;(X)=23dij — fifj, (28)
Vx(@i(X)) =& — fiX Vie{l 23} (29)
Vo) (@i (X)) = =2fipi(X) Vi€ {l, 23]}, (30)
Vo) (@ (X)) = = fiw; (X) — fipi(X) — 8&, (31)

where in the last equatigi denotes as usual the signature of the permutation, k}.

Proof. (25) is just the hypothesis oxy; (26) follows from the fact thaf x preserveg; and
V, so it preserves;; (27) and (28) are trivial, and (29)—(31) follow directly from (26) and
the definition of a 3-Sasakian structure. d

We will now check the relation (24) in each of the cases (a)—(e) using the definition of
the 3-Sasakian structure and the above lemma.

(@ R(p1(X), X)X =—-VxVy )X
=—Vx(§1— f1X) = p1(X) = g(X, X)p1(X) — g(X, p1(X)) X;

() R(X, p1(X))p1(X) = Vx (=2 1901(X)) — Vg (x) (61 — f1X)
=—2f1E1 — [1X) + 92(X) + fa(E1 — f1X) + 2X[p1(X)|?
=—f1E1 — f1X) — X + E1f1 + 2X|91(X)[* = X]p2(X)?
= g(p1(X), p2(X)X — g(X, 91(X))1(X);
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(© R(p2(X), p1(X))p1(X)
= V) (=2 f101(X)) — Vg, 0 (= f201(X) — f192(X) + &3) — 2V (91(X))
= —2f1(— f291(X)— f192(X)+E3) +4 f1 f2901(X) =2 f1 f291(X) — 2 f1 fap1(X)
+2(1— fDe2(X) + fi(— f201(X) — frp2(X) — &3) + 93(¢1(X))
+201(93(X)) — 2f3E1 + 2f163 = f1f201(X) + QfF +2 = 2ff — fD)p2(X)
—2f183 — f163 + 92(X) + f183 — 202(X) + 2361 — 2f361 + 2 /183
= ffop1(X)+(1- fDe2(X)=g (01(X), p1(X))p2(X)—g(91(X), p2(X))e1(X);

(d) R(p3(X), p1(X))p2(X)
= Vga(x) (= f192(X) — f291(X) — §3) — Vg (x) (— fo93(X) — fap2(X) + §1)
+2Ve, (92(X)) =2 f1 f302(X)+2 f2 f3p1(X) — f1(— f203(X) — fap2(X) + &1)
—fo(= f193(X) — fap1(X) —&2) — X + &3f3 — 2f1/2903(X) — 2f1f392(X)
+f2(= f193(X) — f3901(X) + &2) + f3(— f1p2(X) — f291(X) — &3)
=X +&1/1+ 2262 — 2/282 + 2X — 2262 = fafap1(X) — f1f293(X)
= g(p1(X), p2(X))p3(X) — g(p2(X), p3(X))p1(X);

(® R(@1(X), p2(X)) X = Vy, (x) (2 — X2) — Vi, x)(§1 — XF1) + 2V, X
=@3(X) — f1&2 — f2(51 — X)) + 2/12X + ¢3(X)
+ 261+ f1(62 — Xf2) — 2f1f2X — 2¢3(X) =0
=8(X, p2(X))p1(X) — g(X, p1(X))p2(X).
In order to complete the proof of the theorem, we remark thidteing dense i1, the

sectional curvature off has to be constant on the whalg, so by simply connectedness,
M is isometric toS”.

Corollary 4.4. On a seven-dimensional manifold M of tygy¢he only Killing vector fields
of constant length are the trivial ong<e., the linear combinations with constant coefficients
of the Sasakian vector fields
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